
ThS. Trần Thị Thanh Nga

Khoa CNTT, Trường ĐH Nông Lâm TPHCM

Email: ngattt@hcmuaf.edu.vn

Object Oriented Programming 1

OOP
 Object-oriented programming (OOP) involves

programming using objects.

 An object represents an entity in the real world that
can be distinctly identified.

 For example: a student, a desk, a circle, a button, and
even a loan can all be viewed as objects.

 An object has a unique identity, state, and behavior

Object Oriented Programming 2

State and behavior
 The state of an object (also known as its properties or

attributes) is represented by data fields with their
current values.

 A circle object has a data field radius, which is the
property that characterizes a circle.

 The behavior of an object is defined by methods. To
invoke a method on an object is to ask the object to
perform an action.

 Define a method named getArea() for circle objects. A
circle object may invoke getArea() to return its area.

Object Oriented Programming 3

Class, Object, Instance
 A class is a template, blueprint, or contract that

defines what an object’s data fields and methods will
be.

 An object is an instance of a class. You can create
many instances of a class.

Object Oriented Programming 4

Class, Object, Instance

Object Oriented Programming 5

Constructor
 A Java class uses variables to define data fields and

methods to define actions.

 A class provides methods of a special type, known as
constructors, which are invoked to create a new
object.

 A constructor can perform any action, but
constructors are designed to perform initializing
actions, such as initializing the data fields of objects.

Object Oriented Programming 6

Class example

Object Oriented Programming 7

Class diagram

Object Oriented Programming 8

Constructing Objects Using Constructors
 Constructors have three peculiarities:

 A constructor must have the same name as the class
itself.

 Constructors do not have a return type—not even void.

 Constructors are invoked using the new operator when
an object is created. Constructors play the role of
initializing objects.

 It is a common mistake to put the void keyword in
front of a constructor.

 public void Circle() {}

 Circle() is a method, not a constructor.

Object Oriented Programming 9

Accessing Object via Reference
Variables
 Newly created objects are allocated in the memory.

They can be accessed via reference variables.

Object Oriented Programming 10

Reference Variables and Reference Types

 Objects are accessed via object reference variables,
which contain references to the object.

 Syntax: ClassName objectRefVar;

 A class is a reference type, which means that a variable
of the class type can reference an instance of the class.

 Circle myCircle;

 Creates an object and assigns its reference to myCircle:

 myCircle = new Circle();

Object Oriented Programming 11

Reference Variables and Reference Types
 You can write a single statement that combines the

declaration of an object reference variable:

 ClassName objectRefVar = new ClassName();

 the creation of an object: Circle myCircle;

 the assigning of an object reference to the variable:

 myCircle = new Circle();

Object Oriented Programming 12

Accessing an Object’s Data and
Methods
 After an object is created, its data can be accessed and

its methods invoked using the dot operator (.), also
known as the object member access operator.

 objectRefVar.dataField references a data field in the
object.

 objectRefVar.method(arguments) invokes a method
on the object.

Object Oriented Programming 13

Reference Data Fields and the null Value

 The data fields can be of reference types.

 Student class contains a data field name of the String
type.

 String is a predefined Java class.

 If a data field of a reference type does not reference any
object, the data field holds a special Java value, null.

 null is a literal just like true and false. While true and
false are Boolean literals, null is a literal for a reference
type.

Object Oriented Programming 14

Differences Between Variables of
Primitive Types and Reference Types
 When you declare a variable, you are telling the

compiler what type of value the variable can hold.

 For a variable of a primitive type, the value is of the
primitive type.

 For a variable of a reference type, the value is a reference
to where an object is located.

Object Oriented Programming 15

Differences Between Variables of
Primitive Types and Reference Types
 When you assign one variable to another, the other

variable is set to the same value.

 For a variable of a primitive type, the real value of one
variable is assigned to the other variable.

Primitive variable j is copied to variable i
Object Oriented Programming 16

Differences Between Variables of
Primitive Types and Reference Types

 For a variable of a reference type, the reference of one
variable is assigned to the other variable.

Object Oriented Programming 17

Using Classes from the Java Library
 Date class

 Random class

Object Oriented Programming 18

The Date class
 Java provides a system-independent encapsulation of

date and time in java.util.Date class

Object Oriented Programming 19

The Date class
 Java provides a system-independent encapsulation of

date and time in java.util.Date class

java.util.Date date = new java.util.Date();

System.out.println("The elapsed time since Jan 1, 1970 is
" + date.getTime() + " milliseconds");

System.out.println(date.toString());

Object Oriented Programming 20

The Random class
 You have used Math.random() to obtain a random

double value between 0.0 and 1.0.

 Another way to generate random numbers is to use the
java.util.Random class, which can generate a random
int, long, double, float, and boolean value.

Object Oriented Programming 21

The Random class
 When you create a Random object, you have to

specify a seed or use the default seed.

 The no-arg constructor creates a Random object
using the current elapsed time as its seed.

 If two Random objects have the same seed, they will
generate identical sequences of numbers.

Object Oriented Programming 22

The Random class
Random random1 = new Random(3);

System.out.print("From random1: ");

for (int i = 0; i < 10; i++)

System.out.print(random1.nextInt(1000) + " ");

Random random2 = new Random(3);

System.out.print("\nFrom random2: ");

for (int i = 0; i < 10; i++)

System.out.print(random2.nextInt(1000) + " ");

Object Oriented Programming 23

Static Variables, Constants, and Methods

Object Oriented Programming 24

Static Variables, Constants, and Methods
 The data field radius in the Circle class is known as an

instance variable. An instance variable is tied to a
specific instance of the class; it is not shared among
objects of the same class.

 Circle circle1 = new Circle();

 Circle circle2 = new Circle(5);

 The radius in circle1 is independent of the radius in
circle2 and is stored in a different memory location.

 Changes made to circle1’s radius do not affect circle2’s
radius, and vice versa.

Object Oriented Programming 25

Static Variables, Constants, and Methods
 If you want all the instances of a class to share data,

use static variables, also known as class variables.

 Static variables store values for the variables in a
common memory location.

 Because of this common location, if one object
changes the value of a static variable, all objects of the
same class are affected.

 Static methods can be called without creating an
instance of the class

Object Oriented Programming 26

Example
public class Circle {

 double radius;

 static int numberOfObjects = 0; //Number of objects created

 public Circle() {

 radius = 1.0;

 numberOfObjects++;

 }

 public Circle(double newRadius) {

 numberOfObjects++;

 }

 static int getNumberOfObjects() {

 return numberOfObjects;

 }

 public double getArea() {

 return radius * radius * Math.PI;

 }

}
Object Oriented Programming 27

Visibility Modifiers
 You can use the public visibility modifier for classes,

methods, and data fields to denote that they can be
accessed from any other classes.

 If no visibility modifier is used, then by default the
classes, methods, and data fields are accessible by any
class in the same package. This is known as package-
private or package-access.

Object Oriented Programming 28

Visibility Modifiers
 The private modifier makes methods and data fields

accessible only from within its own class.

Object Oriented Programming 29

Visibility Modifiers
 If a class is not defined public, it can be accessed only

within the same package

Object Oriented Programming 30

Visibility Modifiers
 To allow subclasses to access data fields or methods

defined in the superclass, but not allow nonsubclasses
to access these data fields and methods  use the
protected keyword.

 A protected data field or method in a superclass can
be accessed in its subclasses.

Object Oriented Programming 31

Object Oriented Programming 32

Datafield Encapsulation
 The data fields radius and numberOfObjects in the

Circle2 class can modified directly
 myCircle.radius = 5

 Circle.numberOfObjects = 1

 This is not a good practice—for two reasons:
 First, data may be tampered with.

 For example, numberOfObjects is to count the number of objects
created, but it may be mistakenly set to an arbitrary value (e.g.,
Circle.numberOfObjects = 10).

 Second, the class becomes difficult to maintain and vulnerable
to bugs.
 Suppose you want to modify the Circle class to ensure that the

radius is nonnegative after other programs have already used the
class. You have to change not only the Circle class but also the
programs that use it, because the clients may have modified the
radius directly (e.g., myCircle.radius = -5).

Object Oriented Programming 33

Datafield Encapsulation
 To prevent direct modifications of data fields, you

should declare the data fields private, using the
private modifier. This is known as data field
encapsulation.

 A private data field cannot be accessed by an object
from outside the class. But often a client needs to
retrieve and modify a data field.
 To make a private data field accessible, provide a get

method to return its value:

public returnType getPropertyName()

 To enable a private data field to be updated, provide a set
method to set a new value.

public void setPropertyName(dataType propertyValue)

Object Oriented Programming 34

Passing Objects to Methods
 You can pass objects to methods. Passing an object is

actually passing the reference of the object.

public class Test {

 public static void main(String[] args) {

 Circle myCircle = new Circle(5.0);

 printCircle(myCircle);

 }

 public static void printCircle(Circle c) {

 System.out.println("The area of the circle of radius
" + c.getRadius() + " is " + c.getArea());

 }

}

Object Oriented Programming 35

Example
public class Circle {

 double radius;

 static int numberOfObjects = 0; //Number of objects created

 public Circle() {

 radius = 1.0;

 numberOfObjects++;

 }

 public Circle(double newRadius) {

 numberOfObjects++;

 }

 static int getNumberOfObjects() {

 return numberOfObjects;

 }

 public double getArea() {

 return radius * radius * Math.PI;

 }

}
Object Oriented Programming 36

Passing Objects to Methods
 When passing an argument of a reference type, the

reference of the object is passed.

 c contains a reference for the object that is also
referenced via myCircle.

 Changing the properties of the object through c
inside the printAreas method has the same
effect as doing so outside the method through
the variable myCircle.

Object Oriented Programming 37

Passing Objects to Methods

Object Oriented Programming 38

Array of objects

 You can create arrays of objects.

 Circle[] circleArray = new Circle[10];

 To initialize the circleArray, you can use a for loop like
this one:

for (int i = 0; i < circleArray.length; i++) {

 circleArray[i] = new Circle();

}

Object Oriented Programming 39

Array of objects

 An array of objects is actually an array of reference
variables. Invoking circleArray[1].getArea() involves
two levels of referencing.

 circleArray references the entire array.

 circleArray[1] references a Circle object.

Object Oriented Programming 40

Example
public class TotalArea {

 public static void main(String[] args) {

 Circle[] circleArray;

 circleArray = createCircleArray();

 printCircleArray(circleArray);

 createCircleArray();

 }

 /** Create an array of Circle objects */

 public static Circle[] createCircleArray() {

 Circle[] circleArray = new Circle[5];

 for (int i = 0; i < circleArray.length; i++) {

 ircleArray[i] = new Circle(Math.random() * 100);

 }

 return circleArray;

 }

Object Oriented Programming 41

 public static void printCircleArray(Circle[] circleArray) {

 System.out.printf("%-30s%-15s\n", "Radius", "Area");

 for (int i = 0; i < circleArray.length; i++) {

 System.out.printf("%-30f%-15f\n",
 circleArray[i].getRadius(), circleArray[i].getArea());

 }

 System.out.println("———————————————————————");

 // Compute and display the result

 System.out.printf("%-30s%-15f\n", "The total area of
circles is",sum(circleArray));

 }

 public static double sum(Circle[] circleArray) {

 double sum = 0; // Initialize sum

 for (int i = 0; i < circleArray.length; i++)

 sum += circleArray[i].getArea();

 return sum;

 }

}

Object Oriented Programming 42

Immutable Objects and Classes
 Normally, you create an object and allow its contents

to be changed later.

 Occasionally it is desirable to create an object whose
contents cannot be changed, once the object is created.
We call such an object an immutable object and its
class an immutable class.

 The String class is immutable.

 If you deleted the set method in the Circle class, the
class would be immutable, because radius is private and
cannot be changed without a set method.

Object Oriented Programming 43

Immutable Objects and Classes

 If a class is immutable, then all its data fields must be
private and it cannot contain public set methods for
any data fields.

 A class with all private data fields and no mutators is
not necssarily immutable.

 For example, the following Student class has all private
data fields and no set methods, but it is not an
immutable class.

Object Oriented Programming 44

public class Student {

 private int id;

 private String name;

 private java.util.Date dateCreated;

 public Student(int ssn, String newName) {

 id = ssn;

 name = newName;

 dateCreated = new java.util.Date();

 }

 public int getId() {

 return id;

 }

 public String getName() {

 return name;

 }

 public java.util.Date getDateCreated() {

 return dateCreated;

 }

}
Object Oriented Programming 45

public class TestStudent {

 public static void main(String[] args) {

 Student student = new Student(111223333, "John");

 java.util.Date dateCreated = student.getDateCreated();

 dateCreated.setTime(200000);

 // Now dateCreated field is changed!

 }

}

Immutable Objects and Classes

Object Oriented Programming 46

Immutable Objects and Classes
 For a class to be immutable, it must meet the following

requirements:

 all data fields private;

 no mutator methods;

 no accessor method that returns a reference to a data
field that is mutable.

Object Oriented Programming 47

The scope of Variables
 Instance and static variables in a class are referred to as

the class’s variables or data fields.

 A variable defined inside a method is referred to as a
local variable.

 The scope of a class’s variables is the entire class,
regardless of where the variables are declared. A class’s
variables and methods can appear in any order in the
class.

Object Oriented Programming 48

The scope of Variables
 The exception is when a data field is initialized based

on a reference to another data field  the other data
field must be declared first.

Object Oriented Programming 49

The scope of Variables
 You can declare a class’s variable only once, but you

can declare the same variable name in a method many
times in different nonnesting blocks.

 If a local variable has the same name as a class’s variable,
the local variable takes precedence , the class’s variable
with the same name is hidden.

Object Oriented Programming 50

The this Reference
 The this keyword is the name of a reference that refers

to a calling object itself.

Object Oriented Programming 51

The this Reference
 The line this.i = i means “assign

the value of parameter i to the data
field i of the calling object.”

 The keyword this refers to the
object that invokes the instance

Object Oriented Programming 52

The this Reference

Object Oriented Programming 53

Class Abstraction and Encapsulation

 Class abstraction is the separation of class
implementation from the use of a class.

 The creator of a class describes it and lets the user know
how it can be used.

 The collection of methods and fields that are
accessible from outside the class, together with the
description of how these members are expected to
behave, serves as the class’s contract.

Object Oriented Programming 54

Class Abstraction and Encapsulation

 The user of the class does not need to know how the
class is implemented. The details of implementation
are encapsulated and hidden from the user.

 This is known as class encapsulation.

Object Oriented Programming 55

Example: Building a computer system

 Your personal computer has many components—a
CPU, memory, disk, motherboard, fan,...

 Each component can be viewed as an object that has
properties and methods.

 To get the components to work together, you need
know only how each component is used and how it
interacts with the others. You don’t need to know how
the components work internally.

 The internal implementation is encapsulated and
hidden from you. You can build a computer without
knowing how a component is implemented.

Object Oriented Programming 56

Object Composition
 An object can contain another object. The relationship

between the two is called composition.

 Composition is actually a special case of the
aggregation relationship.

 Aggregation models has-a relationships and
represents an ownership relationship between two
objects.

 The owner object is called an aggregating object and its
class an aggregating class.

 The subject object is called an aggregated object and
its class an aggregated class.

Object Oriented Programming 57

Object Composition
 If an object is exclusively owned by an aggregating

object, the relationship between them is referred to as
composition.

 “a student has a name” is a composition relationship
between the Student class and the Name class.

 “a student has an address” is an aggregation
relationship between the Student class and the
Address class, since an address may be shared by several
students.

Object Oriented Programming 58

Object Composition

Object Oriented Programming 59

Object Composition
 Each class involved in a relationship may specify a

multiplicity. A multiplicity could be a number or an
interval that specifies how many objects of the class
are involved in the relationship.

 The character * means an unlimited number of
objects, and the interval m..n means that the number
of objects should be between m and n, inclusive.

 In above example:
 Each student has only one address, and each address

may be shared by up to 3 students.

 Each student has one name, and a name is unique for
each student.

Object Oriented Programming 60

Inheritance
 Object-oriented programming allows you to derive

new classes from existing classes. This is called
inheritance.

 Inheritance is an important and powerful feature in
Java for reusing software.

 Example:
 Suppose you are to define classes to model circles,

rectangles, and triangles. These classes have many
common features.

 What is the best way to design these classes so to avoid
redundancy and make the system easy to comprehend
and easy to maintain?

Object Oriented Programming 61

Superclass and subclass
 A class C1 extended from another class C2 is called a

subclass, and C2 is called a superclass.

 A superclass is also referred to as a parent class, or a
base class.

 A subclass as a child class, an extended class, or a
derived class.

 A subclass inherits accessible data fields and methods
from its superclass and may also add new data fields
and methods.

Object Oriented Programming 62

Object Oriented Programming 63

Calling Superclass Constructors

 Syntax:

 super() invokes the no-arg constructor of its superclass

 super(arguments) invokes the superclass constructor
that matches the arguments.

 The statement super() or super(arguments) must
appear in the first line of the subclass constructor.

public Circle(double radius, String color, boolean filled) {

 super(color, filled);

 this.radius = radius;

}

Object Oriented Programming 64

Overriding Methods
 A subclass inherits methods from a superclass.

 The subclass modify the implementation of a
method defined in the superclass.

 This is referred to a method overriding.

Object Oriented Programming 65

Overriding Methods
 An instance method can be overridden only if it is

accessible.

 a private method cannot be overridden, because it is
not accessible outside its own class.

 A static method can be inherited. A static method
cannot be overridden.

 If a static method defined in the superclass is
redefined in a subclass, the method defined in the
superclass is hidden.

 The hidden static methods can be invoked using the
syntax SuperClassName.staticMethodName.

Object Oriented Programming 66

Overriding vs. Overloading
 Overloading means to define multiple methods with

the same name but different signatures.

 The method is already defined in the superclass.

 The method must be defined in the subclass using the
same signature and the same return type.

Object Oriented Programming 67

Override example

Object Oriented Programming 68

Overload example

Object Oriented Programming 69

The Object Class and Its toString() Method

 Every class in Java is descended from the
java.lang.Object class.

 If no inheritance is specified when a class is defined,
the superclass of the class is Object by default.

 You can use the methods provided by the Object class
in your classes.

Object Oriented Programming 70

The Object Class and Its toString() Method

 Invoking toString() on an object returns a string that
describes the object.

 It returns a string consisting of a class name of which the
object is an instance, an at sign (@), and the object’s
memory address in hexadecimal.

 Example:

 Loan loan = new Loan();

 System.out.println(loan.toString());

 Result: Loan@15037e5.

Object Oriented Programming 71

The Object Class and Its toString() Method

 You should override the toString method so that it
returns a descriptive string representation of the
object.

Object Oriented Programming 72

public String toString() {

 return "created on " + dateCreated + "\ncolor: "

 +color + " and filled: " + filled;

}

Polymorphism
 Define two useful terms: subtype and supertype.

 A class defines a type.

 A type defined by a subclass is called a subtype.

 A type defined by its superclass is called a supertype.

 Example: Circle is a subtype of GeometricObject and
GeometricObject is a supertype for Circle.

Object Oriented Programming 73

public class PolymorphismDemo {

 public static void main(String[] args) {

 // Display circle and rectangle properties

 displayObject(new Circle(1, "red", false));

 displayObject(new Rectangle(1, 1, "black", true));

 }

 /** Display geometric object properties */

 public static void displayObject(GeometricObject object) {

 System.out.println("Created on " +

 object.getDateCreated() + ". Color is " +

 object.getColor());

 }

}

Polymorphism

Object Oriented Programming 74

Abstract Classes
 Class design should ensure that a superclass

contains common features of its subclasses.

 Sometimes a superclass is so abstract that it
cannot have any specific instances.

 Such a class is referred to as an abstract class.

Object Oriented Programming 75

Object Oriented Programming 76

Abstract classes
 Abstract classes are like regular classes, but you

cannot create instances of abstract classes using the
new operator.

 An abstract method is defined without
implementation. Its implementation is provided by
the subclasses.

 A class that contains abstract methods must be
defined abstract.

Object Oriented Programming 77

Abstract classes
 The constructor in the abstract class is defined

protected, because it is used only by subclasses.

 When you create an instance of a concrete subclass, its
superclass’s constructor is invoked to initialize data
fields defined in the superclass.

Object Oriented Programming 78

Interesting Points on Abstract Classes
 In a nonabstract subclass extended from an abstract

class, all the abstract methods must be implemented.
 Abstract methods are nonstatic.

 An abstract class cannot be instantiated using the
new operator, but you can still define its constructors,
which are invoked in the constructors of its subclasses.

 A class that contains abstract methods must be
abstract.
 It is possible to define an abstract class that contains no

abstract methods.

 This class is used as a base class for defining a new
subclass

Object Oriented Programming 79

Interesting Points on Abstract Classes

 You cannot create an instance from an abstract class
using the new operator, but an abstract class can be
used as a data type.

GeometricObject[] objects = new GeometricObject[10];

 You can create an instance of GeometricObject and
assign its reference to the array like this:

 objects[0] = new Circle();

Object Oriented Programming 80

Interfaces
 An interface is a classlike construct that contains only

constants and abstract methods.

 In many ways an interface is similar to an abstract
class, but its intent is to specify common behavior for
objects.

 For example, using appropriate interfaces, you can
specify that the objects are comparable, edible, and/or
cloneable.

Object Oriented Programming 81

Interfaces
 As with an abstract class, you cannot create an

instance from an interface using the new operator,
but in most cases you can use an interface more or less
the same way you use an abstract class.

 For example, you can use an interface as a data type for a
reference variable.

Object Oriented Programming 82

Interfaces
 Since all data fields are public final static and all

methods are public abstract in an interface, Java
allows these modifiers to be omitted.

Object Oriented Programming 83

Interfaces vs. Abstract Classes

Object Oriented Programming 84

Interfaces vs. Abstract Classes

 Java allows only single inheritance for class extension
but allows multiple extensions for interfaces.

 An interface can inherit other interfaces using the
extends keyword. Such an interface is called a
subinterface.

Object Oriented Programming 85

Interfaces vs. Abstract Classes
 A class implementing NewInterface must implement

the abstract methods defined in NewInterface,
Interface1, and InterfaceN.

 An interface can extend other interfaces but not classes.

 A class can extend its superclass and implement
multiple interfaces.

Object Oriented Programming 86

Example

Object Oriented Programming 87

Object Oriented Programming 88

Sorting an Array of Objects
 This example presents a static generic method for

sorting an array of comparable objects.

 The objects are instances of the Comparable
interface, and they are compared using the
compareTo method.

 The method can be used to sort an array of any objects
as long as their classes implement the Comparable
interface.

Object Oriented Programming 89

public class GenericSort {

 public static void main(String[] args) {

 // Create an Integer array

 Integer[] intArray = { new Integer(2), new Integer(4),
 new Integer(3) };

 // Create a Double array

 Double[] doubleArray = { new Double(3.4), new

 Double(1.3), new Double(-22.1) };

 // Create a Character array

 Character[] charArray = { new Character('a'), new

 Character('J'), new Character('r') };

 // Create a String array

 String[] stringArray = { "Tom", "John", "Fred" };

Sorting an Array of Objects

Object Oriented Programming 90

 // Sort the arrays

 Arrays.sort(stringArray);

 Arrays.sort(charArray);

 Arrays.sort(doubleArray);

 Arrays.sort(intArray);

 // Display the sorted arrays

 System.out.print("Sorted Integer objects: ");

 printList(intArray);

 System.out.print("Sorted Double objects: ");

 printList(doubleArray);

 System.out.print("Sorted Character objects: ");

 printList(charArray);

 System.out.print("Sorted String objects: ");

 printList(stringArray);

}

Object Oriented Programming 91

Sorting an Array of Objects

 /** Print an array of objects */

 public static void printList(Object[] list) {

 for (int i = 0; i < list.length; i++)

 System.out.print(list[i] + " ");

 System.out.println();

}

Object Oriented Programming 92

Sorting an Array of Objects

Sorting an Array of Objects
 Now suppose we want to use the sort method of the

Arrays class to sort an array of Employee objects.

 Then the Employee class must implement the
Comparable interface.

Object Oriented Programming 93

Sorting an Array of Objects

 To make a class implement an interface:

 You declare that your class intends to implement the given
interface:

 class Employee implements Comparable

 You supply definitions for all methods in the interface.

Object Oriented Programming 94

Sorting an Array of Objects

 Let’s suppose that we want to compare employees by
their SALARY:

Object Oriented Programming 95

public int compareTo(Employee other) {

 if (salary < other.salary)

 return -1;

 if (salary > other.salary)

 return 1;

 return 0;

}

Sorting an Array of Objects

 Let’s suppose that we want to compare employees by
their NAME:

Object Oriented Programming 96

public int compareTo(Employee other) {

 return name.compareToIgnoreCase(other.name);

}

Sorting an Array of Objects

Object Oriented Programming 97

public class EmployeeSortTest {

 public static void main(String[] args) {

 Employee[] staff = new Employee[3];

 staff[0] = new Employee("Tony Tester", 3800);

 staff[1] = new Employee("Harry Hacker", 3500);

 staff[2] = new Employee("Carl Cracker", 7500);

 Arrays.sort(staff);

 for (Employee e : staff)

 System.out.println("name = " + e.getName() + ",

 salary = “ + e.getSalary());

 }

}

Object Oriented Programming 98

class Employee implements Comparable<Employee> {

 private String name;

 private double salary;

 public Employee(String n, double s) {

 name = n;

 salary = s;

 }

 public String getName() {

 return name;

 }

 public double getSalary() {

 return salary;

 }

Sorting an Array of Objects

Object Oriented Programming 99

 /*Compares employees by NAME

 public int compareTo(Employee other) {

 return name.compareToIgnoreCase(other.name);

 }

 /* Compares employees by salary*/

 public int compareTo(Employee other) {

 if (salary < other.salary)

 return -1;

 if (salary > other.salary)

 return 1;

 return 0;

 }

}

Sorting an Array of Objects

Reference
 Introduction to Java Programming 8th , Y. Daniel

Liang.

Object Oriented Programming 100

