Adva ncmﬁ:ﬁmg

Object-Oriented
Programming

ThS. Tran
Khoa C

Email:



i i

OOP

Object-oriented programming (OOP) involves
programming using objects.

An object represents an entity in the real world that
can be distinctly identified.

e For example: a student, a desk, a circle, a button, and
even a loan can all be viewed as objects.

An object has a unique identity, state, and behavior

Object Oriented Programming



y P

State and behavior

The state of an object (also known as its properties or
attributes) is represented by data fields with their
current values.

A circle object has a data field radius, which is the
property that characterizes a circle.

The behavior of an object is defined by methods. To
invoke a method on an object is to ask the object to
perform an action.

e Define a method named getArea() for circle objects. A
circle object may invoke getArea() to return its area.

Object Oriented Programming



Class, Object, Instance

A class is a template, blueprint, or contract that
defines what an object’s data fields and methods will

be.

An object is an instance of a class. You can create
many instances of a class.

Object Oriented Programming



e A R R R R R B R A S R R e

Class, Object, Instance

Class Name: Circle | =— A class template
Data Fields:
radius is
Methods:
getArea
Circle Object 1 Circle Object 2 Circle Object 3 | < Three objects of
the Circle class
Data Fields: Data Fields: Data Fields:
radius is 10 radius is 25 radius is 12

Object Oriented Programming 5



Constructor

A Java class uses variables to define data fields and
methods to define actions.

A class provides methods of a special type, known as
constructors, which are invoked to create a new
object.

A constructor can perform any action, but
constructors are designed to perform initializing
actions, such as initializing the data fields of objects.

Object Oriented Programming



- Class example

class Circle {
/*% The radius of this circle */
double radius = 1.0; —= Data field

/** Construct a circle object */
Circle() {
}

-+—— (Constructors
J** Construct a circle object */

{
radius = newRadius:
} _
/** Return the area of this circle */
{ = Method
return radius * radius * Math.PI;
}

}

Object Oriented Programming 7



=

Class diagram

radius: double -«——— Data fields
Circle() -« Constructors and
methods

Circle(newRadius: double)
getArea(): double

-+——— ML notation
for objects
radius = 10 radius = 25 radius = 125

Object Oriented Programming 8



Constructing Objects Using Constructors

Constructors have three peculiarities:

e A constructor must have the same name as the class
itself.

e Constructors do not have a return type—not even void.

e Constructors are invoked using the operator when
an object is created. Constructors play the role of
initializing objects.

[t is a common mistake to put the void keyword in
front of a constructor.

e public void Circle() {}
=» Circle() is a method, not a constructor.

Object Oriented Programming 9



~Accessing OW

Variables

* Newly created objects are allocated in the memory.
They can be accessed via reference variables.

Object Oriented Programming



Reference Variables and Reference Types

Objects are accessed via object reference variables,
which contain references to the object.

e Syntax: ClassName objectRefVar;

A class is a reference type, which means that a variable
of the class type can reference an instance of the class.

e Circle myCircle;
Creates an object and assigns its reference to myCircle:
e myCircle = new Circle();

Object Oriented Programming



Reference Variables and Reference Types

You can write a single statement that combines the
declaration of an object reference variable:

ClassName objectRefVar = new ClassName();
e the creation of an object: Circle myCircle;
* the assigning of an object reference to the variable:
myCircle = new Circle();

Object Oriented Programming



~ Accessing an Object’s Data and

Methods

* After an object is created, its data can be accessed and
its methods invoked using the dot operator (.), also
known as the object member access operator.

e objectRefVar.dataField referencesa data field in the
object.

e objectRefVar.method(arguments) invokes a method
on the object.

Object Oriented Programming 13



e —
Reference Data Fields and the null Value
The data fields can be of reference types.

e Student class contains a data field name of the String

type.
e String is a predefined Java class.

If a data field of a reference type does not reference any
object, the data field holds a special Java value, null.

e null is a literal just like true and false. While true and
false are Boolean literals, null is a literal for a reference

type.

Object Oriented Programming



_ Differences Between Variables 0

Primitive Types and Reference Types

When you declare a variable, you are telling the
compiler what type of value the variable can hold.
 For avariable of a primitive type, the value is of the
primitive type.
e For avariable of a reference type, the value is a reference
to where an object is located.

Created using new Circle()

Primitive type int i=1 i |

Object type Circle ¢ ¢ reference p-----=======--- > ¢ Circle

radius = 1

Object Oriented Programming 15



IDiHerences BeW

Primitive Types and Reference Types

When you assign one variable to another, the other
variable is set to the same value.

e For avariable of a primitive type, the real value of one
variable is assigned to the other variable.

Primitive type assignment 1 = ]
Before: After:

1' 1

1 2
] 2 ] 2

Primitive variable j is copied to variable i

Object Oriented Programming 16



" Differences Between Variables of
Primitive Types and Reference Types

e For avariable of a reference type, the reference of one
variable is assigned to the other variable.

Object type assignment ¢1 = ¢2

Before: After:

cl cl

X

c2 — cZ —
a | IR

radius =9 radius =5 radius =9 radius = 5

Reterence variable c2 is copied to variable c1.

Object Oriented Programming 17



Using Classes from the Java Library

e Date class

e Random class

Object Oriented Programming 18



The Date class

* Java provides a system-independent encapsulation of
date and time in java.util.Date class

java.util.Date

+Date() Constructs a Date object for the current time.

+Date(elapseTime: long) Constructs a Date object for a given time in
milliseconds elapsed since January 1, 1970, GMT.

+toString(): String Returns a string representing the date and time.

+getTime(): long Returns the number of milliseconds since January 1,
1970, GMT.

+setTime(elapseTime: long): void Sets a new elapse time in the object.

Object Oriented Programming 19



The Date class

Java provides a system-independent encapsulation of
date and time in java.util.Date class

java.util.Date date = new java.util.Date();

System.out.println("The elapsed time since Jan 1, 1976 1is
" + date.getTime() + " milliseconds");

System.out.println(date.toString());

Object Oriented Programming

20




_ The Random class

* You have used Math.random() to obtain a random
double value between 0.0 and 1.0.

* Another way to generate random numbers is to use the
java.util.Random class, which can generate a random
int, long, double, float, and boolean value.

java.utiLRandom

+Random()

+Random(seed: long)
+nextInt(): int
+nextInt(n: int): int
+nextLong(): long
+nextDouble(): double
+nextFloat(): float
+nextBoolean(): boolean

Constructs a Random object with the current time as its seed.
Constructs a Random object with a specified seed.

Returns a random 1nt value.

Returns a random int value between 0 and n (exclusive).

Returns a random long value.

Returns a random double value between 0.0 and 1.0 (exclusive).
Returns a random float value between 0.0F and 1.0F (exclusive).
Returns a random boo lean value.

Object Oriented Programming 21




The Random class

When you create a Random object, you have to
specify a seed or use the default seed.

The no-arg constructor creates a Random object
using the current elapsed time as its seed.

If two Random objects have the same seed, they will
generate identical sequences of numbers.

Object Oriented Programming 22



““The Random class

Random randoml = new Random(3);
System.out.print("From randoml: ");

for (int 1 = 0; 1 < 10; i++)
System.out.print(randoml.nextInt(1060) + " ");
Random random2 = new Random(3);
System.out.print("\nFrom random2: "),

for (int i = 0; i < 10; i++)
System.out.print(random2.nextInt(1000) + " ");

The code generates the same sequence of random int values:

From randoml: 734 660 210 581 128 202 549 564 459 961
From randomZ2: 734 660 210 581 128 202 549 564 459 961

Object Oriented Programming 23



Static Variables, Constants, and Methods

underline: static variables or methods

instantiate
————>  circlel:Circle | Memory
After two Circle

radius = > 1 | radius !
Objects were created,

1
number0fObjects
is 2.

radius: double
numberQfObjects: int

—h—il number0fObjects

Number0f0bi
getArea(): double

: in

radius = 5_ _‘:} :il radius

number0fObjects = 2

Object Oriented Programming 24



Static Variables, Constants, and Methods

The data field radius in the Circle class is known as an

. An instance variable is tied to a
specific instance of the class; it is not shared among
objects of the same class.

Circle circle1 = new Circle();
Circle circle2 = new Circle(s);

e The radius in circle1 is independent of the radius in
circle2 and is stored in a different memory location.

e Changes made to circle1’s radius do not affect circlez’s
radius, and vice versa.

Object Oriented Programming 25



///¢4§
fﬁVariables, Constants, and Methods

If you want all the instances of a class to share data,
use static variables, also known as class variables.

Static variables store values for the variables in a
common memory location.

Because of this common location, if one object
changes the value of a static variable, all objects of the
same class are affected.

Static methods can be called without creating an
instance of the class

static int numberOfObjects;

static 1nt getNumberObjects() {
return numberOfObjects;

Object Oriented Programming 26



}mple

e

public class Circle {

double radius;

static int numberOfObjects = @; //Number of objects created

public Circle() {
radius = 1.0;
numberOfObjects++;

}

public Circle(double newRadius) {
numberOfObjects++;

}

static int getNumberOfObjects() {
return numberOfObjects;

}

public double getArea() {
return radius * radius * Math.PI;

Object Oriented Programming 27




Visibility Modifiers

You can use the public visibility modifier for classes,
methods, and data fields to denote that they can be
accessed from any other classes.

If no visibility modifier is used, then by default the
classes, methods, and data fields are accessible by any
class in the same package. This is known as package-
private or package-access.

Object Oriented Programming

28



Visibility Modifiers
® The private modifier makes methods and data fields
accessible only from within its own class.

package pl;

public class C1 {
public 1int x;
int y;
private int z;

public void ml1() {

}
void m2() {

}
private void m3() {

}

package pl;

public class C2 {
void aMethod() {
Cl o = new C1();
can access 0.X;
can access 0.Y;
cannot access 0.z;

can invoke o.ml1():
can invoke o.m2():

cannot invoke o.m3():

package pZ;

public class C3 {
void aMethod() {
Cl o = new C1();
can access 0.X;
cannot access 0.y,
cannot access 0.z;

can invoke o.ml1():
cannot invoke o.m2():
cannot invoke o.m3():

Object Oriented Programming

29



Visibility Modifiers
* If a class is not defined public, it can be accessed only
within the same package

package pl; package pl; package p2;
class C1 { public class C2 { public class C3 {
can access (1 cannot access (C1;
1 } can access (2;
¥

Object Oriented Programming 30



P
Visibility Modifiers

To allow subclasses to access data fields or methods
defined in the superclass, but not allow nonsubclasses

to access these data fields and methods = use the
protected keyword.

A protected data field or method in a superclass can
be accessed in its subclasses.

Object Oriented Programming 31



package p1;

public class C1 {
public 1int x;
protected int y;
int z;
private int u;

protected void m() {
}

public class C2 {
Cl o= new C10Q;
can access 0.X;
can access 0.y,
can access 0.z,
cannot access 0.U;

can invoke o.m():

PaN

package p2;

public class C3
extends C1 {
can access Xx;
can access y;
can access z;
cannot access u;

can invoke m();

public class C4

can access X,
can access vy,

extends C1 {

cannot access z;
cannot access U,

can invoke m();

public class C5 {
Cl o= new C1();
can access 0.X;
cannot access 0.y;
cannot access 0.z;
cannot access 0.U;

cannot invoke o.m():

Object Oriented Programming

32




~ Datafield EW

The data fields radius and numberOfObjects in the
Circlez class can modified directly

e myCircle.radius = 5
e Circle.numberOfObjects =1

This is not a good practice—for two reasons:

e First, data may be tampered with.

» For example, numberOfObjectsis to count the number of objects
created, but it may be mistakenly set to an arbitrary value (e.g.,
Circle.numberOfObjects = 10).

e Second, the class becomes difficult to maintain and vulnerable
to bugs.

« Suppose you want to modify the Circle class to ensure that the
radius is nonnegative after other programs have already used the
class. You have to change not only the Circle class but also the
programs that use it, because the clients may have modified the
radius directly (e.g., myCircle.radius = -5).

Object Oriented Programming 33



‘Datafield Encapsulation

To prevent direct modifications of data fields, you
should declare the data fields private, using the
private modifier. This is known as data field
encapsulation.

A private data field cannot be accessed by an object
from outside the class. But often a client needs to
retrieve and modify a data field.

e To make a private data field accessible, provide a get
method to return its value:

public returnType getPropertyName()

* To enable a private data field to be updated, provide a set
method to set a new value.

public void setPropertyName(dataType propertyValue)

Object Oriented Programming 34



- Passing Objems/

You can pass objects to methods. Passing an object is
actually passing the reference of the object.

public class Test {
public static void main(String[] args) {
Circle myCircle = new Circle(5.0);
printCircle(myCircle);
}
public static void printCircle(Circle c) {
System.out.println("The area of the circle of radius

+ c.getRadius() + " is " + c.getArea());

n

Object Oriented Programming 35




}mple

e

public class Circle {

double radius;

static int numberOfObjects = @; //Number of objects created

public Circle() {
radius = 1.0;
numberOfObjects++;

}

public Circle(double newRadius) {
numberOfObjects++;

}

static int getNumberOfObjects() {
return numberOfObjects;

}

public double getArea() {
return radius * radius * Math.PI;

Object Oriented Programming 36




/ :

/

ﬁng Objects to Methods

When passing an argument of a reference type, the
reference of the object is passed.

e ¢ contains a reference for the object that is also
referenced via myCircle.

e Changing the properties of the object through c
inside the printAreas method has the same
effect as doing so outside the method through
the variable myCircle.

Object Oriented Programming 37



Passing Objects to Methods

Stack

Space required for the
printArea method
int times: 5 <«-—;

Circle c: Ireferencet:

Space required for the
main method

Pass-by-value (here
the value is 5)

Pass-by-value

(here the value is
_4--__'/ the reference for
|

the object)

Heap

reference =1

myCircle:

Object Oriented Programming

HA Circle

object

38



/ e
Array of objects

You can create arrays of objects.
Circle[] circleArray = new Circle[10];

To initialize the circleArray, you can use a for loop like
this one:

(inti=o0;i < circleArray.length; i++) {
circleArrayli] = Circle();

Object Oriented Programming

39



~Array of objects

An array of objects is actually an array of reference
variables. Invoking circleArray|1].getArea() involves
two levels of referencing.

e circleArray references the entire array.
o circleArray|1] references a Circle object.

circleArray[0] —— Circle object 0

circleArray reference

circleArray[1]

— Circle object 1

circleArray[9] b——— Circle object 9

In an array of objects, an element of the array contains a reference to an object.

Object Oriented Programming 40



Ppimpte——————

public class TotalArea {
public static void main(String[] args) {
Circle[] circleArray;
circleArray = createCircleArray();
printCircleArray(circleArray);
createCircleArray();

/** Create an array of Circle objects */

public static Circle[] createCircleArray() {
Circle[] circleArray = new Circle[5];
for (int i = @; 1 < circleArray.length; i++) {

}

return circleArray;

ircleArray[i] = new Circle(Math.random() * 100);

Object Oriented Programming

41




public static void printCircleArray(Circle[] circleArray) {
System.out.printf("%-30s%-15s\n", "Radius", "Area");
for (int 1 = @; i < circleArray.length; i++) {

System.out.printf("%-36f%-15f\n",

circleArray[1i].getRadius(), circleArray[i].getArea());
}
System.out.println(" ")
// Compute and display the result

System.out.printf("%-30s%-15f\n", "The total area of
circles is",sum(circleArray));

}

public static double sum(Circle[] circleArray) {
double sum = @; // Initialize sum

for (int i1 = 9; 1 < circleArray.length; i++)
sum += circleArray[i].getArea();
return sum;

Object Oriented Programming 42




“fmmutable Objects and Classes

Normally, you create an object and allow its contents
to be changed later.

Occasionally it is desirable to create an object whose
contents cannot be changed, once the object is created.
We call such an object an immutable object and its
class an immutable class.

e The String class is immutable.

e If you deleted the set method in the Circle class, the
class would be immutable, because radius is private and
cannot be changed without a set method.

Object Oriented Programming 43



e
“fmmutable Objects and Classes

If a class is immutable, then all its data fields must be
private and it cannot contain public set methods for
any data fields.

A class with all private data fields and no mutators is
not necssarily immutable.

e For example, the following Student class has all private
data fields and no set methods, but it is not an
immutable class.

Object Oriented Programming 44



public class Student {
private int id;
private String name;
private java.util.Date dateCreated;
public Student(int ssn, String newName) {
id = ssn;
name = newName;
dateCreated = new java.util.Date();
}
public int getId() {
return id;
}
public String getName() {
return name;
}
public java.util.Date getDateCreated() {
return dateCreated;

Object Oriented Programming

45




e

Immutable Objects and Classes

public class TestStudent {
public static void main(String[] args) {
Student student = new Student(111223333, "John");
java.util.Date dateCreated = student.getDateCreated();
dateCreated.setTime(200000);
// Now dateCreated field is changed!

Object Oriented Programming 46




Immutable Objects and Classes

For a class to be immutable, it must meet the following
requirements:

e all data fields private;
e no mutator methods;

e no accessor method that returns a reference to a data
field that is mutable.

Object Oriented Programming 47



The scope of Variables

Instance and static variables in a class are referred to as
the class’s variables or data fields.

A variable defined inside a method is referred to as a
local variable.

The scope of a class’s variables is the entire class,
regardless of where the variables are declared. A class’s
variables and methods can appear in any order in the

class.

Object Oriented Progra

public class Circle {
public double findArea() {
return radius * radius * Math.PI,;

}

private double radius = 1;

}

ming 48




e e

The scope of Variables

The exception is when a data field is initialized based
on a reference to another data field = the other data
field must be declared first.

public class Foo {
private int 1,;
private int j =1 + 1,

}

Object Oriented Programming 49



~The scope of Variables

You can declare a class’s variable only once, but you
can declare the same variable name in a method many
times in different nonnesting blocks.

e If a local variable has the same name as a class’s variable,
the local variable takes precedence, the class’s variable
with the same name is hidden.

public class Foo {
private int x
private int y

public Foo() {
}

public void p() {
int x = 1; // Local variabl
System.out.printin("x + %)
System.out.printin("y + ¥

}

0; // Instance variabl
0;

m

S S [
o

Object Oriented Programming 50



The this Reference

The this keyword is the name of a reference that refers
to a calling object itsellf.

Object Oriented Programming 51



—— g
~The this R

eference

* The line this.i = i means “assign
public class Foo {

the value of parameter i to thedata | it i -5 = =
field i of the calling object.” |

void setI(int 1) {
this.1 = 1 ;

* The keyword this refers to the }
object that invokes the instance ook o g cdouble 0
}
]

Suppose that fl and f2 are two objects of Foo.

Invoking fl.setI(10) is to execute
this.i = 10, where this refers fl

Invoking f2.setI(45) is to execute
this.i = 45, where this refers f2

Object Oriented Programming 52



The this Reference

public class Circle {

}

private double radius;

public Circle(double radius) {
this.radius = radius;

¥ C_/—/' this must be explicitly used to reference the data

_ . field radius of the object being constructed
public Circle() {

&g;sil.ﬂj;
} —» this is used to invoke another constructor

public double getArea() {
return this.radius * this.radius * Math.PI:

}

Every instance variable belongs to an instance represented by this,
which 18 normallv omitted

Object Oriented Programming 53



\\

“Class Abstraction and Encapsulation

Class abstraction is the separation of class
implementation from the use of a class.

e The creator of a class describes it and lets the user know
how it can be used.
The collection of methods and fields that are
accessible from outside the class, together with the
description of how these members are expected to
behave, serves as the class’s contract.

Object Oriented Programming

4



\/"

~Class Abstraction and Encapsulation

The user of the class does not need to know how the
class is implemented. The details of implementation
are encapsulated and hidden from the user.

e This is known as class encapsulation.

Class implementation Class Contract o
is like a bl : , Clients use the
hidden from the cli Class (signaiures of ~— class through the
hidden from the clients public methods and g
: contract of the class
public constants)

Object Oriented Programming 55



— s
Example: Building a computer system

Your personal computer has many components—a
CPU, memory, disk, motherboard, fan,...

Each component can be viewed as an object that has
properties and methods.

To get the components to work together, you need
know only how each component is used and how it
interacts with the others. You don’t need to know how
the components work internally.

The internal implementation is encapsulated and
hidden from you. You can build a computer without
knowing how a component is implemented.

Object Oriented Programming 56



 — e
Object Composition

An object can contain another object. The relationship
between the two is called composition.

e Composition is actually a special case of the
aggregation relationship.
Aggregation models has-a relationships and
represents an ownership relationship between two
objects.

 The owner object is called an aggregating object and its
class an aggregating class.

e The subject object is called an aggregated object and
its class an aggregated class.

Object Oriented Programming o



y P

Object Composition

If an object is exclusively owned by an aggregating
object, the relationship between them is referred to as
composition.

e “a student has a name” is a composition relationship
between the Student class and the Name class.

e “a student has an address” is an aggregation
relationship between the Student class and the
Address class, since an address may be shared by several
students.

Object Oriented Programming 58



" Object Composition

Composition Aggregation
1 ]\‘ ){ 1.3
Name ‘ Student w Addrﬁssl

A student has a2 name and an address.

Object Oriented Programming 59



\ /

bject Compositio

Each class involved in a relationship may specify a
multiplicity. A multiplicity could be a number or an
interval that specifies how many objects of the class
are involved in the relationship.

The character * means an unlimited number of
objects, and the interval m..n means that the number
of objects should be between m and n, inclusive.

In above example:

e Each student has only one address, and each address
may be shared by up to 3 students.

e Each student has one name, and a name is unique for
each student.

Object Oriented Programming

60



i i

Inheritance

Object-oriented programming allows you to derive
new classes from existing classes. This is called
inheritance.

Inheritance is an important and powerful feature in
Java for reusing software.

Example:

e Suppose you are to define classes to model circles,
rectangles, and triangles. These classes have many
common features.

e What is the best way to design these classes so to avoid
redundancy and make the system easy to comprehend
and easy to maintain?

Object Oriented Programming 61



: T LT ——
y

/

Superclass and subclass

A class C1 extended from another class C2 is called a
subclass, and C2 is called a superclass.

e A superclass is also referred to as a parent class, or a
base class.

A subclass as a child class, an extended class, or a
derived class.

e A subclass inherits accessible data fields and methods

from its superclass and may also add new data fields
and methods.

Object Oriented Programming 62



GeometricObject

s
P
g
|

-color: String
-filled: boolean
~dateCreated: java.util.Date

+CGeometricObject ()

+CeometricObject{color: 5tring,
filled: boolean)

+getColor(): 5tring
+setlolor{color: S5tring): wvoid
+1sFi1led(): boolean
+setFilled(filled: boolean): wvoid
+getDateCreated(): java.util.Date
+toString(): String

The color of the object (default: white).

Indicates whether the object is filled with a color (default: false).

The date when the object was created.

Creates a GeometricObject.

Creates a GeometricObject with the specified color and filled

values,

Returns the color.

Sets a new color.

Returns the 11 1ed property.

Sets a new T117led property.
Returns the dateCreated.

Returns a string representation of this object.

7 %

Circle

-radius: double

+Circle(D
+Circlel{radius: double)

+Circle(radius: double, color: 5tring,
filled: boolean)

+getRadius(): double

+setRadius({radius: double): woid
+getAreal): double
+getPerimeter(): double
+getDiameter(): double
+printCircle(): wvoid

-width: double
=height: double

+Rectanglel)

+Rectangle(width: double, height:

+Rectangle(width: double, height:

color: String, filled: boolean)
+getWidth(): double
+setWidth(width: double): wvoid
+getHeight(): double
+setHeight(height: double): wvoid
+getArea(): double
+getPerimeter(): double

double)

double

Object Oriented Programiming

63



e

ﬁng Superclass Constructors

Syntax:
e super() invokes the no-arg constructor of its superclass

e super(arguments) invokes the superclass constructor
that matches the arguments.

The statement super() or super(arguments) must
appear in the first line of the subclass constructor.

public Circle(double radius, String color, boolean filled) {
super(color, filled);
this.radius = radius;

Object Oriented Programming 64



Overriding Methods

A subclass inherits methods from a superclass.

e The subclass modify the implementation of a
method defined in the superclass.

e This is referred to a method overriding.

Object Oriented Programming

65



// . o
Overriding Methods

An instance method can be overridden only if it is
accessible.

e a private method cannot be overridden, because it is
not accessible outside its own class.

A static method can be inherited. A static method
cannot be overridden.

e If a static method defined in the superclass is
redefined in a subclass, the method defined in the
superclass is hidden.

e The hidden static methods can be invoked using the
syntax SuperClassName.staticMethodName.

Object Oriented Programming



 —
Overriding vs. Overloading

Overloading means to define multiple methods with
the same name but different signatures.

e The method is already defined in the superclass.

e The method must be defined in the subclass using the
same signature and the same return type.

Object Oriented Programming 67



/—\ &
verride example

public class Test {
public static void main(5tring[] args) {
A a = new A();
a.p(10);
a.p(l10.0);

A
e

1

class B {
public void p(double i) {
System.out.printin(i * 2);
}
}

class A extends B {
// This method overrides the method in B
public void p(double i) {
System.out.printin(i);
}
}

Object Oriented Programming 68



S —
le

~Overload examp

public class Test {
public static void main(S5tring[] args) {
A a = new A();

a.p(l0);
a.p(l0.0);
}
class B {

public void p(double i) {
System.out.printin(i * 2);
}

}

class A extends B {
/4 This method overloads the method in B

public void p(int i) {
System.out.printin(i);
}

}

Object Oriented Programming 69



The Object Class and Its toString() Method

Every class in Java is descended from the
java.lang.Object class.

If no inheritance is specified when a class is defined,
the superclass of the class is Object by default.

public class ClassName { public class ClassName extends Object {

Equivalent

_— _—

You can use the methods provided by the Object class
in your classes.

Object Oriented Programming 70



/

The Object Class and Its toString() Method

Invoking toString() on an object returns a string that
describes the object.

e It returns a string consisting of a class name of which the
object is an instance, an at sign (@), and the object’s
memory address in hexadecimal.

e Example:
Loan loan = new Loan();
System.out.println(loan.toString());
e Result: Loan@i15037es5.

Object Oriented Programming 71



- The Object Class and Its toString() Method

You should override the toString method so that it
returns a descriptive string representation of the
object.

public String toString() {
return "created on " + dateCreated + "\ncolor:
+color + " and filled: " + filled;

Object Oriented Programming 72



: T LT ——
y

/

Polymorphism

Define two useful terms: subtype and supertype.
A class defines a type.
A type defined by a subclass is called a subtype.
e A type defined by its superclass is called a supertype.

Example: Circle is a subtype of GeometricObject and
GeometricObject is a supertype for Circle.

Object Oriented Programming 73



~Polymorphism

public class PolymorphismDemo {
public static void main(String[] args) {
// Display circle and rectangle properties
displayObject(new Circle(1, "red", false));
displayObject(new Rectangle(1, 1, "blacR", true));
}
/** Display geometric object properties */
public static void displayObject(GeometricObject object) {
System.out.println("Created on " +
object.getDateCreated() + "

object.getColor());

. Color is +

Object Oriented Programming 74



: T LT ——
y

/

Abstract Classes

Class design should ensure that a superclass
contains common features of its subclasses.

e Sometimes a superclass is so abstract that it
cannot have any specific instances.

Such a class is referred to as an abstract class.

Object Oriented Programming 75



! _ GeomencObew |

7

-color: String
-filled: boolean
-dateCreated: java.util.Date

The # sign indicates
protected modifier

Abstraet methods ———
are italieized

#CeometricObject()

#CeometricObject(color: string,
filled: boolean)

+getColor(): String
+setColor(color: String): void
+isFi1lled(): boolean
+setFilled(fi1led: boolean): void
+getDateCreated(): java.util.Date
+toString(): String

+getArea(): double
+getPerimeter(): double

VAN AN

- Abstract class

-

Methods getArea and getPerimeter are
overridden in (ircle and Rectangle.
Superclass methods are generally omitted

‘ ‘ in the UML diagram for subclasses.

-radius: double

-width: double

+Circle()

+Circle(radius: double)

+Circle(radius: double, color. string,

filled: boolean)
+getRadius(): double

+setRadius(radius: double): wvoid

+getDiameter(): double

-height: double

+Rectangle()

+getWidth(): double

Object Oriented [Programmin

+Rectangle(width: double, height: double)

+Rectangle(width: double, height: double,
color: string, filled: boolean)

+setWidth(width: double): void
+getHeight(): double
+5EtHE'ight[he1'ght: double): void

76




: T LT ——
o

/

Abstract classes

Abstract classes are like regular classes, but you
cannot create instances of abstract classes using the
new operator.

An abstract method is defined without

implementation. Its implementation is provided by
the subclasses.

A class that contains abstract methods must be
defined abstract.

Object Oriented Programming

1



: T LT ——
y

/

Abstract classes

The constructor in the abstract class is defined
protected, because it is used only by subclasses.

When you create an instance of a concrete subclass, its
superclass’s constructor is invoked to initialize data
fields defined in the superclass.

Object Oriented Programming 78



,/V

— s
Interesting Points on Abstract Classes

In a nonabstract subclass extended from an abstract
class, all the abstract methods must be implemented.

e Abstract methods are nonstatic.

An abstract class cannot be instantiated using the
new operator, but you can still define its constructors,
which are invoked in the constructors of its subclasses.

A class that contains abstract methods must be
abstract.

e It is possible to define an abstract class that contains no
abstract methods.

 This class is used as a base class for defining a new
subclass

Object Oriented Programming 79



Interesting Points on Abstract Classes

You cannot create an instance from an abstract class
using the new operator, but an abstract class can be
used as a data type.

GeometricObject[] objects = new GeometricObject[10];

You can create an instance of GeometricObject and
assign its reference to the array like this:

objects[o] = new Circle();

Object Oriented Programming 8o



: F e s e MR o s
e

Interfaces

An interface is a classlike construct that contains only
constants and abstract methods.

In many ways an interface is similar to an abstract

class, but its intent is to specify common behavior for
objects.

e For example, using appropriate interfaces, you can

specity that the objects are comparable, edible, and/or
cloneable.

public interface Edible {

public abstract 5tring howToEat();
}

Object Oriented Programming 81



, o R et
»

Interfaces

As with an abstract class, you cannot create an
instance from an interface using the new operator,
but in most cases you can use an interface more or less
the same way you use an abstract class.

e For example, you can use an interface as a data type for a
reference variable.

Object Oriented Programming 82



e

Interfaces

Since all data fields are public final static and all
methods are public abstract in an interface, Java
allows these modifiers to be omitted.

public interface T { public interface T {
public static final int K = 1; ) int K = 1;
Equivalent
public abstract void p(); void p();
} }

Object Oriented Programming 83



Interfaces vs. Abstract Classes

Interfaces vs. Abstract Classes

Variables Constructors Methods

Abstract class  No restrictions. Constructors are invoked by No restrictions.
subclasses through constructor
chaining. An abstract class
cannot be instantiated using
the new operator.

Interface All variables must be No constructors. An interface All methods must be
public static cannot be instantiated using public abstract
final. the new operator. instance methods.

Object Oriented Programming 84



~Interfaces vs. Abstract Classes

Java allows only single inheritance for class extension
but allows multiple extensions for interfaces.

public class NewClass extends BaseClass
implements Interfacel, ..., InterfaceN {

} s

An interface can inherit other interfaces using the
extends keyword. Such an interface is called a
subinterface.

public interface NewInterface extends Interfacel, ..., InterfaceN {
// constants and abstract methods
}

Object Oriented Programming 85



Interfaces vs. Abstract Classes

A class implementing NewInterface must implement
the abstract methods defined in NewInterface,
Interface1, and InterfaceN.

e An interface can extend other interfaces but not classes.

e A class can extend its superclass and implement
multiple interfaces.

Object Oriented Programming 86



E

abstract class Animal {
public abstract String howToEat() ;

}

Two subclasses of Animal are defined as follows:

class Chicken extends Animal {
public String howToEat() {
return "Fry 1t";

}

X
public static void main(String[] args) {

class Duck extends Animal { Animal animal = new Chicken();

public String howToEat() { eat(animal);

return "Roast it";

1 animal = new Duck();

} eat(animal);

}

public static void eat(Animal animal) {
animal.howToEat();

Object Oriented Prograr;iming 87



public static void main(String[] args) {\—/
Edible stuff = new Chicken(); e

}

public static void eat(Edible stuff) {

¥

eat(stuff);

stuff = new Duck();
eat(stuff);

stuff = new Broccoli();
eat(stuff);

stuff.howToEat();

interface Edible {
public String howToEat() ;

}

class Chicken implements Edible {
public String howToEat() {
return "Fry 1t";
}
¥

class Duck implements Edible {
public String howToEat() {
return "Roast 1it";

}

Object Oriented Programming 88



Sorting an Array of Objects

This example presents a static generic method for
sorting an array of comparable objects.

The objects are instances of the Comparable
interface, and they are compared using the
compareTo method.

The method can be used to sort an array of any objects
as long as their classes implement the Comparable
interface.

Object Oriented Programming 89



~ Sorting an Array o

public class GenericSort {
public static void main(String[] args) {
// Create an Integer array

Integer[] intArray = { new Integer(2), new Integer(4),
new Integer(3) };

// Create a Double array

Double[] doubleArray = { new Double(3.4), new
Double(1.3), new Double(-22.1) };

// Create a Character array

Character[] charArray = { new Character('a'), new
Character('J'), new Character('r') };

// Create a String array

String[] stringArray = { "Tom", "John", "Fred" };

Object Oriented Programming 90



- Sorting an W

// Sort the arrays

Arrays.sort(stringArray);
Arrays.sort(charArray);
Arrays.sort(doubleArray) ;
Arrays.sort(intArray);

// Display the sorted arrays
System.out.print("Sorted Integer objects: ");
printList(intArray);

System.out.print("Sorted Double objects: ");
printList(doubleArray);
System.out.print("Sorted Character objects: ");
printList(charArray);
System.out.print("Sorted String objects: ");
printList(stringArray);

Object Oriented Programming o1




Sorting an Array of Objects

/** Print an array of objects */
public static void printList(Object[] list) {
for (int i = @; i < list.length; i++)
System.out.print(list[i1] + " ");
System.out.println();

Object Oriented Programming 92



- |
Sorting an Array of Objects

Now suppose we want to use the sort method of the
Arrays class to sort an array of Employee objects.

Then the Employee class must implement the
Comparable interface.

Object Oriented Programming 93



/
Sorting an Array of Objects

To make a class implement an interface:

* You declare that your class intends to implement the given
interface:

class Employee implements Comparable
* You supply definitions for all methods in the interface.

Object Oriented Programming 94



““Sorting an Array of Objects

Let’s suppose that we want to compare employees by
their SALARY:

public int compareTo(Employee other) {
if (salary < other.salary)
return -1;
if (salary > other.salary)
return 1;
return 0;

Object Oriented Programming 95



““Sorting an Array of Objects

Let’s suppose that we want to compare employees by
their NAME:

public int compareTo(Employee other) {
return name.compareToIgnoreCase(other.name);

¥

Object Oriented Programming 96



“Sorting an Array of Objects

—

public class EmployeeSortTest {
public static void main(String[] args) {
Employee[] staff = new Employee[3];
staff[0] = new Employee("Tony Tester", 3800);
staff[1] = new Employee("Harry Hacker", 3500);
staff[2] = new Employee("Carl Cracker", 7500);

Arrays.sort(staff);

for (Employee e : staff)

System.out.println("name = " + e.getName() + "
salary = “ + e.getSalary());

J

Object Oriented Programming

97



" Sorting an Array of Objects

class Employee implements Comparable<Employee> {
private String name;
private double salary;
public Employee(String n, double s) {
name = n;

salary = s;

}

public String getName() {
return name;

}

public double getSalary() {
return salary;

Object Oriented Programming 98



-

"“Sorting an Array of Objects

/*Compares employees by NAME
public int compareTo(Employee other) {
return name.compareToIgnoreCase(other.name);

}

/* Compares employees by salary*/
public int compareTo(Employee other) {
if (salary < other.salary)
return -1;
if (salary > other.salary)
return 1;
return 0;

Object Oriented Programming 99



Reference

Introduction to Java Programming 8" | Y. Daniel
Liang.

Object Oriented Programming 100



